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els described these reactions such as volume reaction model, grain model, and nucleation model. These
models give two coupled partial differential equations (CPDEs). In this work an integral transformation
and subsequent finite element method is used for solving the coupled partial differential equations of
these reactions. In each mesh the Rayleigh–Ritz method is applied. Finally the results of this work are
compared with the existing numerical solutions and experimental data successfully.
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. Introduction

Gas–solid reactions are very important in many chemical and
etallurgical processes such as metal oxides reduction [1–3], metal

ulfides roasting [4], adsorption of gaseous pollutants [5,6], coal
asification [7], active carbon preparation [8] and catalyst regener-
tion [9,10]. Reaction engineering of these processes is based on a
eries of mathematical modeling [11,12]. These models for a porous
olid pellet consist of volume reaction model [13–15], the grain
odel [16–21], random pore model [22–24] and nucleation model

25–28].
The volume reaction model assumes that the reaction and

iffusion take place simultaneously in the porous pellet as a homo-
eneous system [13–14]. When the rate dependency on the solid
oncentration is below the first order, there is a time for complete
f the reaction. After this time, there are two outer diffusion layer
nd inner diffusion-reaction layer. Therefore, the system becomes
o a moving boundary problem with a tedious equations [15]. In this
eference the cumulative gas concentration was defined and the
rthogonal collocation method was applied for solving the volume
eaction model equations.

Moreover, some of the important gas–solid reactions in chem-

cal and metallurgical industries consist of solid pellets produced
rom small particles or grains [12]. The grain model is a suitable

athematical representation of this system, which assumes that
he reaction is accomplished on the surface of the fine and non-

∗ Corresponding author. Tel.: +98 21 64543198; fax: +98 21 66405847.
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orous grains. In many of these gas–solid reactions a solid layer
uild up around each grain in the form of product or impurities cre-
ting another resistance against gas diffusion [11]. The grain model
ith product layer resistance has been developed for the study of

uch systems [18].
Nucleation effects are often significant, for example in the

eduction of metallic oxides. The conversion–time behavior of
hese systems at low temperatures shows periods of induction,
cceleration, and decay [12], e.g. in the reduction of nickel oxide
ith hydrogen [1]. A rate equation, in the absence of pore diffu-

ion, has been developed for the interpretation of experimental
onversion–time data showing sigmoidal trends [29]. A more
eneral problem has been presented for isothermal and non-
sothermal cases [25]. The effect of pore diffusion in the nucleation

odel has been analyzed by Sohn [26]. A numerical solution and an
pproximate relation between the conversion and time have also
een presented. In Ref. [30], the population balance approach was
pplied to the cuprous iodide oxidation system. The results of Ref.
31] are in good agreement with the numerical solution of Sohn
26]. Shieh and Lee [32] incorporated induction time using the sur-
ace activation concept. Finally, effect of bulk flow for the porous
ellets was considered in this model by Sohn and Bascur [33].

In this work, an integral transformation and subsequent
ayliegh–Ritz finite element method is applied to solve the
as–solid reactions equations. The solution technique for the

ucleation model (which contains significant non-linear terms) is
escribed in details. Other presented model equations can be solved
imilarly. Some computer codes have been developed for this pur-
ose in MATLAB media. This program can solve the model equations
ith various mesh numbers. The number of meshes depends on the

http://www.sciencedirect.com/science/journal/13858947
mailto:a.afshar@aut.ac.ir
dx.doi.org/10.1016/j.cej.2008.05.016
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Nomenclature

a = CA/CAg dimensionless gas concentration
b = CB/CB0 dimensionless solid concentration
CA gas concentration in the pellet
CAg bulk gas concentration
CB solid concentration
CB0 initial solid concentration
DAB molecular diffusivity
De effective diffusivity of gas A in the pellet
Fp shape factor of the pellet = 1,2,3 for slab, cylinder and

sphere, respectively
h length of an element
i,j position indexes
k reaction rate constant for the nucleation model
kg reaction rate constant for the model presented in

Ref. [1]
km mass transfer coefficient
L distance from center of the pellet
MA molecular weight of gaseous reactant
MB molecular weight of solid reactant
MNiO molecular weight of nickel oxide
n a positive integer in Eq. (14)
Nsh = kmR/De Sherwood number
rg radius of unreacted core in the grain
rg0 initial grain radius
r* = rg/rg0 dimensionless unreacted radius in the grain
R characteristic pellet length
Rg universal gas constant
t time
T absolute temperature (◦K)
X solid conversion
y = L/R dimensionless position in the Pellet
Y cumulative gas concentration

Greek letters
ε pellet porosity
�g = �pl = (KCAgMBt)/(�Brg0) dimensionless time for the grain

models
�N =�BkCAgt dimensionless time for the nucleation model

�vol = k CAgC
p
B0

CB0
t dimensionless time for volume reaction

model
�B true molar density of solid reactant B

� = R
√

FgKs(1−ε)
Derg0

reaction Thiele modulus for the pellet in the

grain models

�N = R
√

k�B(1−ε)
2De Fp

Thiele modulus for nucleation model

�g =
√

Ksrg0
2DegFg

reaction modulus for the grain

� = R
√

k CP
B0
De

reaction Thiele modulus for the volume reac-
tion model

� stoichiometric coefficient of solid reactant
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1 ∂
yFp−1 ∂a = �2r∗Fg−1a (9)
B
� tortuosity factor

as concentration gradient in the solid pellet, which is determined
y Thiele modulus. The preferences of finite element method over

ther conventional solution techniques in this field are as follows:

1. accuracy,
. having the profile of the target function between global nodes,
ing Journal 144 (2008) 110–118 111

. capability of imposing various boundary conditions to the prob-
lem, and

. capability of solving these equations in various reaction regimes
even in the presence of high concentration gradients.

The results of this method are compared with other solu-
ions and experimental data with a good accuracy for the various
as–solid reaction models.

. Mathematical models

A general gas–solid reaction can be given as

(g) + �BB(s) → C(g) + �DD(s) (1)

For a single porous pellet, the following assumptions can be
ade.

Pseudo-steady state describes concentration of ‘A’ in the pellet.
Equimolar counter-diffusion exists within the pellet.
The system is isothermal.
Solid structure is unaffected by the reaction.
The reaction is irreversible and first order with respect to the
gaseous reactant.
The external mass transfer resistance is negligible.

.1. Nucleation model

The general dimensionless conservation equations of gas and
olid, based on nucleation growth kinetics are as follows [26]:

1
yFp−1

∂

∂y

(
yFp−1 ∂a

∂y

)
= −2Fp�2

N
a

f ′(b)
(2)

∂b

∂�N
= a

f ′(b)
(3)

ith the initial and boundary conditions

N = 0, b = 1 (4)

= 0,
∂a

∂y
= 0 (5)

= 1, a = 1 (6)

here the dimensionless quantities are defined in the notation, and

′(b) = ∂f (b)
∂b

(7)

(b) = [−ln(b)]1/n (8)

hese coupled partial differential equations must be solved numer-
cally. An approximate solution based on the law of addition of the
eaction and diffusion times has also been presented [26]. Reactions
hich obey the nucleation model do not have two stage reactions

t any position of the pellet.

.2. Simple grain model

The dimensionless governing equations in the general form are
11]: ( )

yFp−1 ∂y ∂y

∂r∗

∂�g
= −a (10)
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he initial and boundary conditions are as follows:

g = 0 r∗ = 1 (11)

= 0
∂a

∂y
= 0 (12)

= 1 a = 1 (13)

his model consists of two stages. In the first stage (� < �c), diffusion
f gas “A” and reaction between gas “A” and solid “B” are happening
imultaneously. At the time � = �c all solid of the outer layer of the
ellet has been reacted. Then second stage is started when � > �c.

n this stage the gas diffuses through the completely reacted outer
ayer of the pellet, in order to reach the diffusion-reaction zone.
hus the grain model becomes a moving boundary problem in the
econd stage.

.3. Grain model with product layer resistance

The general form of differential equations describing the grain
odel with product layer resistance is [18]:

1
yFp−1

∂

∂y

(
yFp−1 ∂a

∂y

)
= �2r∗Fg−1a

1 − �2
gq

′
Fg

(r∗)
(14)

∂r∗

∂�pl
= − a

1 − �2
gq

′
Fg

(r∗)
(15)

he initial and boundary conditions of this model are the same as
he grain model.

Dimensionless parameters are defined in the appendix and it is
nown that:

′
Fg

(r∗) = ∂qFg (r∗)

∂r∗
(16)

here for spherical grains (Fg = 3):

Fg (r∗) = 1 − 3 r∗2 + 2 r∗3 (17)

s described in the grain model, this model is also a moving bound-
ry system.

.4. Volume reaction model

The dimensionless governing equations describing this model
re [15]:

1
yFp−1

∂

∂y

(
yFp−1 ∂a

∂y

)
= �2abp (18)

∂b

∂�vol
= −abp (19)

he initial and boundary conditions of this model are the same as
he nucleation model.

p represents the order of the reaction with respect to solid
eactant. If p ≥ 1 the solid reactant concentration at any position
annot drop to zero in finite time and reaction occurs to some vary-

ng extent at all positions within the porous pellet at all times.
f 0 ≤ p < 1, the solid reactant can be completely depleted at some
ositions (pellet surface) after finite time. This leads to the moving
oundary type of problem like the grain model and grain model
ith product layer resistance.

w
a
t
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. Integral transformation

First of all, the cumulative gas concentration term is defined as
ollows [15]:

(y, �) =
∫ �

0

ad� (20)

ombining Eqs. (2) and (3) gives the following equation:

1
yFp−1

∂

∂y

(
yFp−1 ∂a

∂y

)
= −2Fp�2

N
∂b

∂�
(21)

ntegration of Eq. (21) with respect to time from 0 to � with use of
q. (20) and considering initial condition (4), results in a form given
elow for the nucleation model:

1
yFp−1

∂

∂y

(
yFp−1 ∂Y

∂y

)
= −2Fp�2

N(b− 1) (22)

= 0
∂Y

∂y
= 0 (23)

= 1 Y = � (24)

ntegration of Eq. (3) with initial condition (4) gives:

= [−ln(b)]1/n (25)

hus, by inverting the above equation, b can be expressed as a
unction of Y as follows:

= exp(−Yn) (26)

n this work, these equations are solved for n = 3 which is the most
omplicated case in the nucleation model. For other values of n, e.g.
n = 1), similar procedure can be repeated to obtain the answers.

By considering n = 3, differentiating Eq. (25) with respect to y
esults in:

dY
dy

= − 1
3b

[−ln(b)]−2/3 db
dy

(27)

. Finite element method

First, consider a typical element ˝e(ya,yb), whose endpoints
ave the coordinates y = ya and y = yb, is isolated from the
esh. In this work developing the algebraic equations using the

ayleigh–Ritz method, which is based on the weak form of the
ifferential equation is applied.

Quadratic Lagrangian polynomial approximation of the solution
ithin a typical finite element˝e is applied as follows [34]:

e
h =

3∑
j=1

be
j  

e
j (y) (28)

here be
j

are the values of the solution b(y, �) at the nodes of the
nite element ˝e, and  j are quadratic Lagrangian interpolation

unctions. The necessary and sufficient number of algebraic rela-
ions among the be

j
can be obtained by recasting differential Eq.

22) in a weighted-integral form (Fp = 3):




∫ yb

w

[
1 ∂

(
y2 ∂Y

)
+ 6�2b− 6�2

]
y2 dy = 0 (29)
ya
y2 ∂y ∂y N N

here w denotes the weight function. Terms 4
 and y2 dy in the
bove equation are due to spherical differential volume element of
he pellet which its radius is denoted by y. Integrating by parts Eq.
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Table 1
Comparison of the results for nucleation model, for n = 3 and spherical geometry
(small modulus)a

�↓ This work
F.E.M.

Sohn [26]
numerical solution

Sohn [26]
approximate solution

Jamshidi and Ale
Ebrahim [37]

0.2 0.0076
0.4 0.0530 0.05 0.06 0.044
0.6 0.1516 0.14 0.19 0.117
0.8 0.2930 0.29 0.36 0.222
1 0.4600 0.46 0.52 0.351
1.2 0.6145 0.62 0.66 0.494
1.4 0.7496 0.75 0.76 0.64
1.6 0.8516 0.87 0.83 0.779
1.8 0.920 0.94 0.89 0.882
2 0.962 0.96 0.91 0.940

a n = 3, Fp = 3, �N = 1.

Table 2
Comparison of the results for nucleation model, for n = 1 and spherical geometry
(small modulus)a

�↓ This work
F.E.M.

Sohn [26]
numerical solution

Sohn [26]
approximate solution

Jamshidi and Ale
Ebrahim [37]

0.2 0.1399 0.13 0.18 0.141
0.4 0.268 0.26 0.32 0.267
0.6 0.3705 0.37 0.42 0.381
0.8 0.4644 0.46 0.51 0.482
1 0.5460 0.55 0.57 0.57
1.2 0.6165 0.62 0.64 0.646
1.4 0.6772 0.69 0.7 0.711
1.6 0.7292 0.74 0.744 0.765
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29) results in:

y2w
∂Y

∂y

]yb
ya

+
∫ yb

ya

(
−y2 dw

dy
dY
dy

+ 6�2
Ny

2bw − 6�2
Nwy

2
)

dy = 0

(30)

irst term in the above equation is related to natural boundary con-
itions in the nodes of a typical element and is defined as follows

n an arbitrary element:

e
1 =

(
−y2 dY

dy

)
ye

1

, Q e
2 =
[(
y2 dY

dy

)
ye−

1

+
(

−y2 dY
dy

)
ye+

2

]
,

Q e
3 =
(
y2 dY

dy

)
ye

3

(31)

ubstituting Eq. (27) into Eq. (30) gives:∫ yb

ya

(
1

3b
[−ln(b)]−2/3y2 dw

dy
db
dy

+ 6�2
Ny

2bw
)

dy

=
∫ yb

ya

6�2
Nwy

2dy+ Q (32)

n the Rayleigh–Ritz method we have [34,35]:

=  (33)

ubstituting Eqs. (33) and (28) into Eq. (32) results in:

Ke]{be} = {f e} + {Q e} (34)

here Ke is the coefficient matrix and the column vector fe is the
ource vector. These matrices are described as follows [36]:

e
ij =

∫ yb

ya

⎛
⎝y2 1

3
∑3

k=1b
e
k
 e
k

[
−ln

(
3∑
k=1

be
k 

e
k

)]−2/3
d e

i

dy

d e
j

dy

+ 6�2
Ny

2 e
i  

e
j

⎞
⎠dy (35)

e
i =

∫ yb

ya

6�2
N 

e
i y

2dy (36)

he assembly of element equations (Eq. (34)) follows the same pro-
edure as in linear finite element analysis [36]. It should be noted
hat Eq. (35) does not have analytical solution and must be inte-
rated numerically. This equation contains high non-linear terms
lso. If we denote the global nodal vector by {b}, the assembled
ystem of equations can be written as

K({b})]{b} = {F} (37)

here [K] and {F} denote the global coefficient matrix and right-
and side vector, respectively. [K] is a non-linear function of the
odal values bi and it is a 2N + 1 × 2N + 1 symmetric matrix. N is the
umber of meshes in the domain of the problem. Consequently, the
esulting finite element equations are non-linear. It should be noted
hat all of the global matrix {Q} components are zero except the last
omponent. Due to the boundary condition in the center of the pel-
et first term of this matrix is zero; since there is not any point source
r point sink in the domain of the problem, other components of

his matrix are also 0.

Since the value of b2N+1 is known at the surface of the pellet at
ach time (see Eq. (26)), the system of equations can be condensed
34]. The condensed non-linear algebraic system of equations is
olved by direct iteration technique at each time successfully [36].

o
t
r
0

.8 0.7735 0.79 0.78 0.809
0.8110 0.83 0.81 0.846

a n = 1, Fp = 3, �N = 1.

fter calculating the values of bj at each time, the solid conversion
or the nucleation model will be computed as follows:

= 1 − Fp
∫ 1

0

b yFp−1dy (38)

y numerical integration (Simpson’s 1/3 rule), the conversion of the
olid at each time can be obtained.

. Results and discussion

The results of this work (dotted points) are compared with other
xisting solution methods and experimental works (continuous
ines) in the literature as follows.

.1. Comparison with existing solutions

.1.1. Nucleation model
Comparison of the solid conversions is shown in three condi-

ions.
Table 1 shows the results for n = 3 and � = 1. The results of this

able are obtained by using the uniform mesh of two quadratic ele-
ents, i.e. each mesh has the length of h = 0.5. Table 2 shows the

esults for n = 1 and � = 1. The results of this table are also obtained
y using the uniform mesh of two quadratic elements. Finally in
able 3 the uniform mesh of 40 quadratic elements is used for n = 1
nd � = 10.2 due to high gas concentration gradients in the pellet
diffusion control regime) and extreme non-linearity in Eq. (37).
Fig. 1 is the comparison of this work with numerical solution
f Sohn [26] for n = 3 and low Thiele modulus. Figs. 2 and 3 are
he same comparisons for n = 1 at low and high Thiele modulus,
espectively. In the mentioned cases, dimensionless time step of
.1 gives accurate results.
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Table 3
Comparison of the results for nucleation model, for n = 1 and spherical geometry
(large modulus)a

�↓ This work
F.E.M.

Dudukovic and Lamba
[15] orthogonal
collocation

Sohn [26]
approximate solution

Jamshidi and Ale
Ebrahim [37]

1 0.099 0.098 0.151 0.099
2 0.1722 0.171 0.214 0.176
3 0.2237 0.224 0.262 0.237
4 0.2776 0.279 0.301 0.286
5 0.3154 0.312 0.335 0.323
6 0.3562 0.350 0.364 0.352
7 0.3849 0.380 0.391 0.374
8 0.4022 0.401 0.416 0.392
9 0.4288 0.430 0.739 0.407

10 0.4531 0.452 0.460 0.420

a n = 1, Fp = 3, �N = 10.2.
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Fig. 3. Comparison of this work with numerical solution of Dudukovic and Lamba
[11] for n = 1 and �N = 10.2.

F
f

c

∂a = Nsh(1 − a) (39)
ig. 1. Comparison of this work with numerical solution of Sohn [26] for n = 3 and

N = 1.

.1.2. Simple grain model
Fig. 4 is a comparison of this work with the solution of Sohn

nd Szekely [16], for Fp = Fg = 3. Fig. 5 shows comparison between
nite element results and the approximate solution of Evans and
ande [38] for F = 3, F = 2. Fig. 6 represents comparison between
p g

esults of this work with results of Sohn and Szekely [16] in the pres-
nce of external mass transfer resistance. In this case the boundary

ig. 2. Comparison of this work with numerical solution of Sohn [6] for n = 1 and

N = 1.

I

Y

F
R

ig. 4. Comparison of this work with numerical solution of Sohn and Szekely [16],
or Fp = Fg = 3.

ondition at the surface of the pellet is as follows:
∂y

ntegration of Eq. (10) with initial condition (11) gives:

= 1 − r∗ (40)

ig. 5. Comparison of results of this work with approximate solution of Evans and
ande [38] for Fp = 3, Fg = 2.
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ig. 6. Comparison between results of this work with results of Sohn and Szekely
16] in the presence of external mass transfer resistance for Fp = Fg = 3.

he end of the first stage can be found by letting r* = 0 when y = 1
nd a = 1 at the above equation, thus we have � = 1 for end of the
rst stage in case of infinite Sherwood number.

When we are in the beginning of second stage of the reaction, the
ast component of the global nodal vector becomes negative; this
oes not have a physical meaning in reaction engineering but does
ave a mathematical meaning. By the progress of reaction, more
omponents of the global nodal vector become negative. This shows
he progress of the completely reacted zone toward the center of
he pellet (moving boundary behavior). These negative components
ill be considered zero in calculation of the solid conversion but

mploying their negative value in calculation of the global nodal
ector is necessary at each time. This behavior is repeated in the sec-
nd stage of grain model with product layer resistance and volume
eaction model as well.

.1.3. Grain model with product layer resistance
Results of this work (dotted points) are compared with the

umerical solution of Calvelo and Smith [39] in Fig. 7. In this fig-
re comparison of the solid conversions is shown in three reaction

egimes. In case of kinetically reaction control regime for the grains
�2

g = 1/6), the uniform mesh of two quadratic elements is used, i.e.
ach mesh has the length of h = 0.5. In the intermediate regime, i.e.
oth kinetic and diffusion are significant (�2

g = 10/6) the uniform

ig. 7. Comparison between results of this work with the numerical solution of
alvelo and Smith [39] for Fp = Fg = 3 for the grain model with product layer resis-
ance.

c

Y

T
a

F
[

ig. 8. Comparison of this work with numerical solution of Dudukovic and Lamba
15] for spherical pellet in different Thiele modulus.

esh of three (h = 1/3) quadratic elements has been employed and
nally in case of completely diffusion control regime (�2

g = 100/6).
ue to steep gas concentration gradients in the solid pellet, uniform
esh of four quadratic elements gives accurate results.
Integration of Eq. (15) with initial condition (11) gives:

= 1 + �2
g − r∗ − 3�2

g r
∗2 + 2�2

g r
∗3

(41)

he end of the first stage can be found by letting r* = 0 when y = 1
nd a = 1 at the above equation, thus we have � = 1 + �2

g for the end
f the first stage and second stage starts from � > 1 + �2

g .

.1.4. Volume reaction model
In Figs. 8 and 9, comparison between finite element solution and

rthogonal collocation [15] is considered. Since the reaction order
ith respect to the solid reactant is 0.5 in this part, we have a two-

tage (moving boundary) reaction in these figures. Comparison of
he results in different Thiele modulus shows complete agreement
etween the results of this work and results of Ref. [15].

Integration of Eq. (18) with initial condition at �vol = 0 b = 1 and
onsidering p = 0.5 gives:
= 2(1 −
√
b) (42)

he end of the first stage can be found by letting b = 0 when y = 1
nd a = 1 at the above equation, thus we have � = 2 for the end of

ig. 9. Comparison of this work with numerical solution of Dudukovic and Lamba
15] for slab pellet in different Thiele modulus.
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Fig. 12. Comparison of this work (dotted points) with experimental data (continu-
ous line) of Efthimiadis and Sotirchos [6].

Table 4
Experimental operating conditions for the reduction of nickel oxide with hydrogen
reported by Szekely and Sohn [1]

T

5
5
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D

ig. 10. Comparison of this work with experimental work of Szekely and Sohn
2] T = 520 ◦K, R = 0.21 cm, ε= 0.529, n = 3, Fp = 1, k = 103.02 cm3/gmol s �≈ 2.5,
e 
 0.1 cm2/s.

he first stage in case of half order reaction with respect to solid
eactant.

.2. Comparison with experimental works

.2.1. Nucleation model
The experimental gas–solid reaction which is considered in this

art is as follows:

2(gas) + NiO(solid) → H2O(gas) + Ni(solid) (43)

Most of the assumptions in the mathematical modeling part of
his paper are acceptable for the above reaction [1]. The results
f two experimental works from Ref. [1] with various tempera-
ures and pellet sizes are compared with finite element results in
igs. 10 and 11 successfully. In Ref. [1] a gas–solid reaction based
n the grain model [16–21] has been employed for the reduction
f porous nickel oxide pellets with hydrogen. Experimental data
f this reaction obtained by Szekely and Sohn [1] is presented in
able 4. Szekely and Sohn [1] obtained the tourtousity and grain
adius by minimizing the variance in tourtousity value. The aver-
ge value of � thus found was 2.5 and the corresponding grain size

as about 9 �m [1]. Results of this work (finite element method)

re obtained by employing the experimental data of Table 4.
In this work we shall change the grain model reaction rate con-

tant into nucleation model reaction rate constant. This procedure

ig. 11. Comparison of this work with experimental work of Szekely and
ohn [2] T = 552 ◦K, R = 0.21 cm, ε= 0.53, n = 3, Fp = 1, k = 335.9 cm3/gmol s, �≈ 2.5,
e 
 0.1 cm2/s.

I
t
o
(

F
o

(◦K) Fp R (cm) ε DAB (cm2/s) De (cm2/s) kg/rg (s−1)

20 1 0.30 0.529 2.41 0.107 9.2
52 1 0.21 0.53 2.65 0.112 30.0

s illustrated in the next equation:

= kgMNiO

�Brg
(44)

ffective diffusivity coefficient is necessary for calculation of reac-
ion Thiele modulus. This coefficient is obtained by the following
quation:

1
De

= �

ε

(
1
DAB

+ 1
Dk

)
(45)

here Dk is the Knudsen diffusivity and it is calculated by the fol-
owing relation:

k = rg

(1 − ε)(1 + 
/8)(8MA/
RgT)1/2
(46)
n Figs. 10 and 11, the approximate results of Ref. [1] do not obey
he trend of experimental data. Moreover, approximate solution
f Ref. [1] does not contain any information about the first period
induction time) of such sigmoidal conversion behaviors.

ig. 13. Comparison of this work (dotted points) with experimental data (continu-
us line) of Efthimiadis and Sotirchos [6].
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Fig. 14. Comparison of this work (dotted points) with experimental data (continu-
ous line) of Efthimiadis and Sotirchos [6].
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ig. 15. Comparison of this work (dotted points) with experimental data (continu-
us line) of Efthimiadis and Sotirchos [6].

.2.2. Grain model with product layer resistance
The ZnO + H2S is an important reaction in petrochemical plants

or complete natural gas desulphurization [21,40]. Trace of H2S is a
erious poison for the catalysts of the synthesis reactions. Thus the
as–solid reaction (ZnO + H2S) plays a significant role in removing
race of H2S. Results of finite element method (dotted points) are
ompared with experimental data (continuous lines) of Efthimiadis
nd Sotirchos [6]. Comparisons of this work and experimental data
f Efthimiadis and Sotirchos [6] are presented in Figs. 12–15 suc-
essfully. In these figures effects of pellet size and temperature are
onsidered.

. Conclusion

In this work, a new numerical solution technique has been
sed for calculating the conversion of four gas–solid reaction mod-
ls named nucleation model, simple grain model, grain model
ith product layer resistance and volume reaction model. In the

ase of comparison with existing numerical solutions, different
eaction regimes have been considered for the above gas–solid

eaction models. Comparison of results shows a very good agree-
ent between finite element results and other existing solutions.
oreover, this method (Rayleigh–Ritz finite element) reveals very

ccurate results for the moving boundary problems such as grain

[

[

ing Journal 144 (2008) 110–118 117

odels and half order volume reaction model. In the case of com-
arison with experimental works, results of this novel method
how acceptable trend and agreement with experimental data.
hus this new numerical technique can be applied in all reaction
egimes successfully. In addition to this, a proper gas–solid reaction
odel with an accurate solution technique can be applied for pre-

icting the complete behavior of special reactions such as H2 + NiO
r H2S + ZnO successfully. The results of this work can be used
or estimating kinetic parameters of such reactions by comparison
ith experimental data.
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